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ABSTRACT
The effects of electron nonlocal heat transport (NLHT) on the two-dimensional single-mode ablative Rayleigh–Taylor instability (ARTI) up
to the highly nonlinear phase are reported for the first time through numerical simulations with a multigroup diffusion model. It is found that
as well as its role in the linear stabilization of ARTI growth, NLHT can also mitigate ARTI bubble nonlinear growth after the first saturation
to the classical terminal velocity, compared with what is predicted by the local Spitzer–Härm model. The key factor affecting the reduction
in the linear growth rate is the enhancement of the ablation velocity Va by preheating. It is found that NLHT mitigates nonlinear bubble
growth through a mechanism involving reduction of vorticity generation. NLHT enhances ablation near the spike tip and slows down the
spike, leading to weaker vortex generation as the pump of bubble reacceleration in the nonlinear stage. NLHT more effectively reduces the
nonlinear growth of shorter-wavelength ARTI modes seeded by the laser imprinting phase in direct-drive laser fusion.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088058

I. INTRODUCTION

Rayleigh–Taylor instability (RTI)1,2 occurs when a fluid sup-
ports or accelerates another fluid of higher density. It plays a crucial
role in many natural systems and engineering applications,3,4 in
particular in inertial confinement fusion (ICF),5–7 which has recently
reached an astonishing milestone toward the goal of ignition,8,9

and in astrophysics.10–12 RTI is an inevitable occurrence and causes
severe performance degradation of ICF implosions as the laser
energy irradiates the outer surface of a spherical capsule contain-
ing the fusion fuel, creating a hotter low-density plasma corona
pushing onto the denser and colder shell. Modulations seeded by
target roughness and laser nonuniformities can grow via RTI,
thereby reducing target compression,13 mixing ablator material into
the fusion fuel,14–17 and eventually degrading the neutron yield. RTI
at ablative fronts (ARTI) is characterized by mass ablation driven by
the laser energy deposited at the critical surface and then transported

to the shell surface. It is well known that ablation stabilizes ARTI
in the linear (i.e., exponential growth) phase.18–24 When the mode
amplitude exceeds a threshold fraction (around 0.1 as predicted by
classical RTI theory25,26) of its wavelength, the exponential growth
ceases, the nonlinear phase starts, and the modulations develop into
“bubbles” (lighter fluid rising through the denser fluid) and “spikes”
(denser fluid falling through the lighter fluid) owing to the genera-
tion of higher harmonics. The bubble velocity transitions to a con-
stant terminal value27,28 in the deep nonlinear phase of the classical
RTI. This transition is commonly known as “nonlinear saturation.”
It has been found that ablation will expand the nonlinear satura-
tion threshold fraction from 0.1 up to 0.3 for shorter-wavelength
modes according to nonlinear ARTI theory.29,30 In the highly non-
linear phase, ablation will destabilize ARTI bubble growth owing to
the vortex acceleration mechanism,31,32 accelerating the bubble to a
velocity well above the classical terminal value. The ARTI bubbles
are accelerated by the centrifugal force provided by vortices when
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penetrating through the dense shell, compromising shell integrity in
ICF implosions.

Accurate modeling of thermal transport in ICF plasmas is
required for predicting the key processes critical to ignition target
design, one of which is the growth of ARTI.33 In low-Z materials
like deuterium–tritium (DT), where radiation energy is negligible,
thermal transport is mainly via electrons. The electron conduction
model implemented in general radiation-hydrodynamic codes is
based on the classical Spitzer–Härm (SH) theory:34 QSH = −κSH∇Te,
where QSH is the SH heat flux vector, Te is the electron temperature,
and κSH ∝ T5/2

e is the SH thermal conductivity coefficient. The SH
model starts from the following first-order expansion of the electron
distribution function (EDF):

fe(v) = f0(v) +
v
v
⋅ f1(v), (1)

where f0(v) is the isotropic part of the EDF, which is assumed
to be the usual Maxwell–Boltzmann distribution, v is the velocity
of electron thermal motion, and (v/v) ⋅ f1(v) is the first-order
anisotropic part of the EDF. The heat flux is determined by f1.
The SH model is local, since the heat flux is determined by the
local plasma quantities. Unfortunately, this simple SH model fails
to reproduce experimental data. The temperature gradients in ICF
plasmas are sufficiently large that the assumption of the SH model
that the mean free path of high-energy heat-carrying electrons is
much smaller than the scale length of the temperature gradient
[LT ≡ ∣∇ ln(Te)∣−1] breaks down in such regions. These high-energy
electrons escape steep temperature gradients, causing both classical
local heat flux reduction and nonlocal preheating ahead of the tem-
perature front. It is usually suggested that the electron nonlocal heat
transport (NLHT) needs to be taken into account when the Knudsen
number Kn ≡ λei/LT ≥ 0.01,35–38 where λei is the electron–ion (e–i)
mean free path. Because heat transport modeling affects mass abla-
tion processes, it will also modify ARTI evolution. Discrepancies
between experiments and standard SH simulations were observed
in a number of pioneering works.39–43 It was shown that simu-
lations without NLHT predicted faster RTI growths in the linear
phase than were observed experimentally39–42 and that account-
ing for NLHT led to considerably better agreement between the
simulated RTI growth rates39,40,42,43 and experiments. The NLHT
linear stabilization was mostly attributed to a one-dimensional (1D)
preheating effect caused by penetration of the high-energy electrons
from the tail of the Maxwellian distribution into the high-density
target,39,40,42–44 which causes a lower target peak density and
a longer density scale length in the longitudinal hydrodynamic
profiles. Although the influence of NLHT on the ARTI linear growth
rates can be estimated phenomenologically by substituting the 1D
hydrodynamic parameters modified by NLHT into the existing
linear theories based on the SH model,18–21 its effect on ARTI
evolution in the nonlinear phase is unknown, leading to risky
uncertainties in ICF designs.

Modeling NLHT is challenging at ICF-relevant temporal and
spatial scales. The most accurate thermal transport models solve the
Vlasov–Fokker–Planck (VFP) kinetic equations,35 but are usually
too computationally expensive in multiple dimensions. Instead, an
ad hoc heat flux limiter45 is often employed to take account of flux

inhibition effects in hydrodynamic codes to match certain aspects
of experimental results. However, a flux limiter cannot capture
preheating physics. More recently, the nonlocal multigroup diffu-
sion model proposed by Schurtz, Nicolaï, and Busquet (the SNB
model)46 has been considered as a method that balances physi-
cal accuracy and computational efficiency. When NLHT effects are
significant, f0 in Eq. (1) will deviate from the Maxwell–Boltzmann
distribution, and f 1 will deviate from its counterpart in the SH
model. Starting from the steady VFP equation with the Bhatnagar,
Gross, and Krook (BGK) collisional operator,47 the SNB model gives
a set of transport equations that can be solved for the deviation of f0
from the Maxwell–Boltzmann distribution. More details of the SNB
model are given in Sec. II. SNB-like algorithms have been extensively
tested48–51 and used in state-of-the-art ICF codes.

In this paper, we present for the first time a numerical sim-
ulation of ARTI evolution with NLHT up to the highly nonlinear
phase and uncover a new nonlinear bubble mitigation mechanism
due to the reduction of vorticity generation by NLHT. NLHT
suppresses vorticity generation by inhibiting the growth of spikes,
which in turn suppresses the nonlinear acceleration of bubbles. This
newly discovered physical mechanism allows for a better under-
standing of the effect of NLHT on the evolution of nonlinear
ARTI in high-energy-density environments. The results described
here can help to understand and evaluate the differences between
experimental data and current numerical simulations and lead
to better strategies for providing the necessary margin in ICF
design.

II. SIMULATION SETUP
Our simulations are performed using the hydrodynamic

code ART,31,32 dedicated to simulating ARTI in ICF-relevant
regimes.31,32,52–54 ART solves the single-fluid hydrodynamic equa-
tions over a Cartesian grid, with switchable SH and SNB heat
transport models being implemented. For each time step, the
mass equation, the momentum equation, and the energy equation
without thermal transport are first solved explicitly using a finite
volume approach:

∂ρ
∂t
+∇ ⋅ (ρu) = 0, (2)

∂(ρu)
∂t

+∇ ⋅ (ρuu) = −∇P + ρg, (3)

∂E
∂t
+∇ ⋅ [(P + E)u] = ρg ⋅ u, (4)

where ρ, u, P, and g are the density, velocity, pressure, and accel-
eration, respectively. E ≡ [P/(γ − 1)] + ρ∣u∣2/2 is the total energy,
where γ = 5/3 is the ratio of specific heats. The spatial reconstruc-
tion is performed using the MUSCL (Monotone Upstream-centered
Schemes for Conservation Laws)–Hancock scheme,55 and the
Riemann problem at the cell interfaces is approximately solved using
the Harten–Lax–van Leer–contact (HLLC)56 solver. The thermal
transport part of the energy equation is then treated implicitly to
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avoid the strict time step requirement of explicit diffusion equation
solvers:

ρCv
∂Te

∂t
= −∇ ⋅Q, (5)

where Cv is the specific heat at constant volume and Q is the
SH or SNB heat flux vector. A pressure correction due to thermal
conduction is then made.

The SNB model implemented in ART divides electrons of
different energies (mean free paths) into a number of groups and for
each group solves a transport equation for H g proportional to the
deviation of the electron distribution from Maxwellian on the given
density and temperature profiles:

[ 1
λg(r)

−∇ ⋅ λg(r)
3
∇]Hg(r) = −∇ ⋅Ug(r). (6)

Here, U g is defined as

Ug ≡
QSH

24 ∫
Eg/kBTe

Eg−1/kBTe

β4e−β dβ, (7)

where λg is the mean free path, Eg is the upper energy bound
of the gth group, and kB is Boltzmann’s constant. The SNB heat
flux is derived as QSNB = QSH −∑gλg∇H g/3, where QSH is the SH
heat flux calculated on the basis of the given density and temper-
ature profiles. Cao et al.51 found that ∇ ⋅ QSNB = −∑gH g/λg , and
this relation can be directly employed when solving the thermal
transport equation. The SNB module is used to update the hydro-
dynamic quantities using a predictor/corrector implicit iterative
algorithm similar to that of Cao et al.51 and has been validated with
Refs. 48 and 57.

To study the growth of small-scale ARTI in the acceleration
phase of ICF implosion when the aspect ratio is large, the planar-
target approximation is valid and the simulation uses a rectangular
computational domain in the x–z plane. For the quasi-equilibrium
state in the z direction from which the ARTI perturbations grow,
a profile typical of a direct-drive National Ignition Facility (NIF)
target is used, as illustrated in Fig. 1(a). The initial ablation front
(the interface between the dense and the ablated plasma) is located at
za and the peak density is ρa = 4 g/cm3. The quasi-equilibrium state
with the SH model is obtained by integrating the 1D hydrodynamic
equilibrium equations in the frame of reference of the shell from the
ablation front toward both sides. Our simulations do not include the
low-density region where the lasers are interacting with the plasma,
and therefore we do not directly handle laser absorption. Instead,
the laser energy transported toward the ablation front is simulated
by a constant bottom-boundary heat flux calculated self-consistently
with the SH model on the basis of the 1D hydrodynamic profiles
to ablate the target at an ablation velocity Va = 3.5 μm/ns (i.e., the
penetration velocity of the ablation front into the heavy shell
material), and the corresponding ablation pressure (the pressure
at the ablation surface) is Pa = 130 Mbar. The quasi-equilibrium
state with the SNB model is initialized using the SH hydrodynamic
profiles and evolves self-consistently with the SNB model. The SNB

FIG. 1. (a) Equilibrium hydrodynamic profiles of a 1.5 MJ NIF ignition target dur-
ing the acceleration phase after evolving for 1 ns using the initialization of the SH
model: density from the SH model (black dashed line) and from the SNB model
for Kn = 0.01 (blue squares) and Kn = 0.011 (red solid line); vz from the SH
model (black solid line) and from the SNB model for Kn = 0.01 (green squares)
and Kn = 0.011 (orange solid line). The local Knudsen number Knloc profile (gray
solid line) at t = 0 is also plotted. The three purple stars mark the locations of
Knloc = {0.011, 0.010, 0.009}. (b) Linear growth rates of ARTI from the SH and
SNB models for different values of Kn: the SH model for Kn = 0.01 (blue squares)
and Kn = 0.011 (black triangles) and the SNB model for Kn = 0.01 (green circles)
and Kn = 0.011 (red diamonds). The black triangles and blue squares are superim-
posed, since the SH model is local and independent of Kn. The theoretical curves
are γ = (AT kg − A2

T k2V2
a /rd)1/2 − (1 + AT)kVa.20

and SH heat fluxes are kept the same at the bottom boundary by
setting the reflective boundary condition ∂zH g = 0. To adjust the
strength with which NLHT modifies the 1D hydrodynamic profiles,
our simulations are designed with different values of Kn. The
characteristic Kn in each simulation is chosen as the maximum local
Knudsen number in the system occurring at the bottom bound-
ary, and Kn can be increased by extending the bottom boundary of
the simulation box toward the critical surface. The distance L from
the bottom boundary (z = 0) to the ablation surface (z = za) is set
to {38, 60} μm, corresponding to Kn = {0.010, 0.011}. Expanding L
from 38 μm to 60 μm not only increases Kn by 10%, but also signifi-
cantly expands the spatial region in which the nonlocality condition
is satisfied (nonlocal effects are usually considered important35–38

when Kn ≳ 10−2), since Kn increases slowly with L [see the local
Knudsen number profile in Fig. 1(a)]. The larger-Kn case is expected
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to exhibit more significant NLHT modifications of the 1D hydro-
dynamic profiles near the ablation front, as shown in Fig. 1(a). A
simulation is also performed for another case with shorter L (18 μm,
yielding Kn = 0.009), and NLHT is expected to be even weaker in
this case.

The gravity is initialized as g0 = 110 μm/ns2. Since the shell
mass decreases owing to ablation, the effective acceleration g(t)
is slowly and automatically adjusted in time during the simula-
tion to keep the ablation front approximately fixed in space, i.e.,
g(t) = [(P + ρu2)lower − (P + ρu2)upper]/Ms, where the subscripts
“lower” and “upper” indicate the integral values at the bottom and
top boundaries, respectively, and Ms is the mass of the remaining
plasma in the computational domain. This is equivalent to studying
the ARTI growth in the frame of the shell. The RTI is seeded
via velocity perturbations at the ablation front in the form
Vpz = Vp0 cos(kx)exp(−k∣z∣), Vp0/Va = 0.286. The simulations are
performed for a series of wavelengths λ ≡ 2π/k. The grid size is
Δx = Δz = 0.1 μm. Periodic boundary conditions are applied along
the x direction, and inflow and outflow boundary conditions are
applied on the upper and lower boundaries, respectively, in the z
direction.

III. RESULTS AND DISCUSSION
The linear growth rates are found to be reduced by NLHT

through its enhancement of the ablation velocity Va due to stronger
preheating. The ARTI amplitudes η in the simulations are measured
as half of the peak-to-valley heights. The linear growth rate is fitted
with data in the exponential-growth stage when η ≤ 0.1λ (below
which ARTI is usually considered in the linear phase) for a series
of wavelengths [see Fig. 1(b)]. The theoretical growth rate curves
for comparison are calculated using γ = (ATkg − A2

Tk2V2
a/rd)1/2

− (1 + AT)kVa,20 where rd = ρl/ρh is the density ratio between
the effective light (ρl) and heavy (ρh) fluids, and AT ≡ (ρh − ρl)/
(ρh + ρl) is the effective Atwood number. Since the density varies
continuously, it is necessary to define appropriate densities for the
light and heavy fluids, according to Eqs. (5) and (6) in Ref. 20: ρh ≈ ρa
and ρl ≈ ρaμ0(kL0)1/ν, where L0 = Lmvν/(ν + 1)ν+1 is the character-
istic thickness of the ablation front, Lm = min[∣ρ/(∂ρ/∂x)∣] is the
minimum density gradient scale length, μ0 = (2/ν)

1/ν/Γ(1 + 1/ν)
+ 0.12/ν2, ν is the thermal conduction power index, and Γ(x) is the
gamma function. The theoretical curves for the SNB cases are calcu-
lated using the same Atwood number AT and density scale length L0
as in the SH cases, together with the measured Va in each individ-
ual SNB simulation. The fairly good agreement between theory and
simulations that can be achieved by adjusting Va alone is an indica-
tion that enhanced Va is the key factor lowering the linear growth
rates. The enhancement of Va is attributed to the enhanced heat flux
and reduced peak density at the ablation front caused by preheating.
The growth rate differences between SNB and SH cases are more
significant for larger Kn. The linear growth rate in the Kn = 0.009
case is found to be closer to that in the SH case.

In the Kn = 0.01 case, although the linear growth rates are
reduced by NLHT, the slowdowns of bubbles and spikes are
different. As shown in Fig. 2(a), the SNB spike trajectory devi-
ates from the SH case earlier than the bubble trajectories. By
t = 2 ns [i.e., Zt = 253 μm, where Zt ≡ ∫ t

0 ∫
t′′

0 g(t′) dt′ dt′′ is the

FIG. 2. (a) Bubble and spike trajectories from the SH and SNB models vs Zt in the
λ = 7 μm, Kn = 0.01 cases, where Zt ≡ ∫ t

0 ∫
t′′

0 g(t′) dt′ dt′′ is the displacement
function commonly used in theoretical descriptions of time-dependent acceleration
histories. (b) Ratio of bubble velocities to classical values. The symbols represent
the simulations and the curves are from the analytical model given by Eq. (8). (c)
Average vorticity inside the bubble volume within a length 1/k below the bubble
vertex, as illustrated in Fig. 3(a).

displacement function commonly used instead of time to com-
pensate for slight variations of gravity], when the ARTI amplitude
is large enough to be considered to be in the nonlinear stage, the
bubble trajectories from the two models are still close, indicating
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nonuniform ablation of bubbles and spikes by the nonlocal heat
flux. In the Kn = 0.011 case, which is not shown in Fig. 2(a), it is
found that stronger preheating reduces bubble growth in the lin-
ear stage. Therefore, the Kn = 0.01 cases allow us to focus on the
NLHT effects on nonlinear bubble evolution while minimizing the
impact on bubble linear growth caused by 1D preheating effects on
the hydrodynamic profiles.

The ARTI bubble velocity Ub, defined as the speed with which
the bubble vertex penetrates through the slab of dense fluid, is
plotted in Fig. 2(b) for two different unstable perturbation wave-
lengths close to the linear cutoff (λ > λcutoff ≈ 6 μm) and two different
thermal transport models. The bubble velocities start to grow from
the values of Va in each individual case. As the bubble amplitude
becomes larger, the low-density plasma filling the bubble is cooled
down by the cold walls containing the bubble, and the mass ablation
from the bubble walls becomes negligible. At this stage, the bubble
behaves as in the classical RTI case without ablation, and the
bubble velocity saturates at the two-dimensional (2D) classical value
Ucl2D

b = [g(1 − rd)/(3k)]1/2 given by potential-flow theory,27,28 as
shown in Fig. 2(b). The ratio Ub/Ucl2D

b approaches 1 as ARTI
saturates. There is little difference between the values of Ub from
the SH and SNB models up to this stage, which is consistent with
the fact that the bubble trajectories in the linear phase have not been
significantly affected by switching from SH to SNB in the Kn = 0.01
case.

Switching heat transport models alters the bubble reaccelera-
tion processes after the first saturation of Ub to Ucl2D

b , as plotted
in Fig. 2(b). With both thermal transport models, the simulations
show that the vortex carried by the material ablated from the spike is
transported into the bubble and accumulates near the bubble
vertex as the ablated plasma fills the bubble volume. The vortex then
provides a centrifugal force that raises the bubble vertex and accel-
erates Ub beyond Ucl2D

b , i.e., reacceleration occurs. NLHT causes
a reduction in bubble reacceleration. It is found that smaller-
wavelength modes are more susceptible to NLHT, because the
reacceleration stage is more strongly affected by NLHT in the 7 μm
case [Fig. 2(b)]. Simulations have also been performed for larger
perturbation wavelengths, and it has been found that the difference
between the bubble velocities from the SNB and SH models is much
smaller for λ greater than 20 μm.

Reduction of bubble reacceleration with the SNB model is
consistent with the weaker vorticity accumulation inside the
bubble plotted in Fig. 2(c). The vorticity ω0 in Fig. 2(c) is the volume
average of ∇× u inside the bubble between 1/k below the bubble
vertex and the vertex, as shown in Fig. 3(a). With both thermal
transport models, the nonlinear evolution of the bubble velocities
can be approximated well by the asymptotic bubble velocity formula
given in Ref. 31:

Urot2D
b = [ g(1 − rd)

3k
+ rd

ω2
0

4k2 ]
1/2

. (8)

A comparison of the simulations with the result from Eq. (8) is
shown in Fig. 2(b). This indicates that the vorticity is also the key
reason for the reacceleration in the SNB cases. The vorticity growth
with the SNB model is slower than that with the SH model, and this
effect is more significant for smaller-wavelength cases.

FIG. 3. Simulation results for the 10 μm-SNB case at t = 1.7 ns (Zt = 180 μm). (a)
Density. The volume marked inside the bubble is within 1/k below the bubble tip.
(b) Temperature contour with heat flux vectors. (c) Vorticity. (d) Baroclinic source
ω̇baro ≡ −∇P ×∇ρ/ρ2. (e) Zoomed-in image of the vorticity and baroclinic source
near the RTI interface. The hydrodynamic contours in the SH case are qualitatively
similar to those in the SNB case.

The vorticity is generated in the region where ablation is signifi-
cant. As the bubble and spike grow, the hot plasma inside the bubble
is cooled down by the shell plasma. As a consequence, the majority
of the heat flux can hardly enter the inside of the bubble, and mass
ablation is predominant at the spike tip. Figure 3(a) shows the long
bubble-spike structure. The mushroom-like structures usually seen
in classical RTI near the spike tip are suppressed in ARTI owing to
intense ablation. Figure 3(b) shows the temperature contours, and
it can be seen that the heat flux vectors illustrated by arrows are
mainly around and below the spike tip. The evolution of vorticity
obeys Dω/Dt ≡ ∂ω/∂t + (u ⋅ ∇)ω = −∇P ×∇ρ/ρ2, with compress-
ibility and viscosity effects neglected. The right-hand side, known
as the baroclinic term, is recognized as the major source generat-
ing vorticity in ARTI. The vorticity filling the bubble [Fig. 3(c)] is
originally driven by the baroclinic source [Fig. 3(d)] concentrated
near the spike tip and is affected by the ablation process there.
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The ablation process near the spike is affected by heat trans-
port modeling and influences the falling speed of the spike. The SNB
model produces larger heat fluxes in the ablation region than the
SH model. In Fig. 4(a), the SNB correction to the heat flux along
the axis of the spike in the λ = 7 μm SNB case is plotted. With
the SNB model, there is a heat flux increase as a preheating effect
in the coronal plasma. The SNB heat flux tunnels further through
the high-density spike and causes a 35-fold increase compared with
the SH heat flux near the sharp-density-gradient spike interface.
Larger heat fluxes near the interface at the spike tip cause greater
ablation of the spike and slow down the spike speed. This spike
slowdown, which is visible from the linear stage to the deeply non-
linear stage [Fig. 2(a)], is found to be more significant for λ = 7 μm
than for 10 μm. This trend is consistent with stronger ablation
stabilization of smaller-wavelength perturbations in the linear phase
of ARTI.

The baroclinic source is found to be largely correlated with the
dimensionless quantity kLspike in our simulations, where Lspike is the
spike height defined as the vertical distance between the bubble and
spike interfaces. The volume-averaged baroclinic term ω̇baro is found
to have a linear dependence on kLspike until the late stage of the

FIG. 4. (a) Density profile and the heat flux correction term QSNB − QSH along
the spike axis at t = 2.1 ns (Zt = 286 μm) in the 7 μm SNB case. The density
profile of the SH case at the same time is plotted as the dash-dotted line for com-
parison. QSNB and QSH are calculated using the density and temperature profiles
from the SNB model. (b) Dependence of the volume-averaged baroclinic source
−∇P ×∇ρ/ρ2 on the dimensionless quantity kLspike for both SH and SNB
simulations.

simulations, as shown in Fig. 4(b). It can also be seen from Fig. 4(b)
that this dependence is insensitive to the heat transport model used.
Therefore, a lower spike speed leads to weaker vortex generation,
which further reduces the bubble velocity via the vortex acceleration
mechanism.

In our 2D simulations with the SH model, both the bubble
velocity and the vorticity inside the bubble saturate in the highly
nonlinear phase,31,32 as also shown in Figs. 2(b) and 2(c). It can be
seen that the NLHT effect in the SNB cases leads to a slower vor-
ticity accumulation inside the bubble, while the bubble velocity may
still approach a vortex-accelerated terminal velocity similar to that
in the SH case. Given adequate growth time in the SNB case, the
slowed-down vorticity generation ω̇baro grows larger as Lspike grows
[see Fig. 4(b)], and thus the vorticity accumulated inside the bubble
is likely to increase to a similar saturation value as in the SH case [see
Fig. 2(c)].

IV. CONCLUDING REMARKS
In summary, it has been shown that NLHT can mitigate ARTI

growth in both its linear and nonlinear stages. The strength of the
effect of NLHT on the ablation front is varied by adjusting the
characteristic Kn. For Kn ∼ 10−2, the key factor reducing the linear
growth rate is the enhanced Va. The reduction in linear growth
rate is found to be due more to slowdown of spikes than to that
of bubbles, since NLHT causes greater ablation of spikes than of
bubbles. For Kn = 0.01, the linear phase of spike growth is inhib-
ited by NLHT, but the linear phase of bubble growth is minimally
affected, and thus study of this regime can help isolate the NLHT
effects on bubble nonlinear growth, which is a 2D effect that cannot
be predicted by a 1D hydrodynamic simulation. It has been found
that NLHT enhances the ablation near the side of the spike tip and
slows down the spike. Since the spike height is correlated with the
vorticity generation rate, the nonlinear bubble reacceleration due
to the vortex generated near the spike tip and transported into the
bubble is reduced by NLHT. This newly discovered mechanism is
more significant for smaller-wavelength modes and can be utilized
to suppress the nonlinear bubble growth of short-wavelength ARTI
seeded by the laser imprinting phase in direct-drive laser fusion.
The controlled use of NLHT has already attracted some research
interest. Otani et al.58 utilized “cocktail color irradiation” to mitigate
RTI by moderately enhancing NLHT. Our findings may help opti-
mize those strategies utilizing NLHT to mitigate RTI in ICF-relevant
experiments.

In the presence of intense vorticity generation accompanied
with ARTI, the self-generated magnetic field is also expected to
be intense,59,60 because the self-generated magnetic field is closely
related to the vorticity (and the baroclinic term). The combined
influence of self-generated magnetic fields and electron NLHT61

on ARTI evolution is an interesting topic. Important related top-
ics, such as bubble merger and competition, convergent geometry,
three-dimensional effects, and coupling with radiation transport
should be studied in future work.
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